

Flemington Road - Review of Options

Document No. CTW-DMP-RP-0009

Rev.	Date	Rev. description	Prepared by	Reviewed by	Approved by
А	05/03/16	Draft for Review	Greg George	Annie Tran	Geoff Grant
0	06/03/16	Issued	Annie Tran	Greg George	Geoff Grant

Table of Contents

	Flemington Road - Review of Options1			
1.	Introduction			
2.	Context4			
	(a)	Existing rail and tram infrastructure4		
	(b)	Intersection design requirements5		
	(c)	Pedestrian Connectivity		
	(d)	Utility Service Relocations – North Side Flemington Road7		
3.	Optio	n Assessment8		
	Common Elements: Commentary8			
	Option 1: Commentary9			
	Option 2: Commentary11			
	Option 3: Commentary13			
	Option 4: Commentary15			
4.	Option 4 – Basic geometry and lane widths17			
5.	Current Design			

1. Introduction

As part of the Citylink Tulla Widening: Bulla Road to Power Street project, there is a requirement to modify the existing Flemington Road exit ramp to cater for the future demands on the road network. This includes providing additional lanes on the exit ramp and creating additional storage for vehicles exiting the Toll Road prior to connecting to the local road network, without causing traffic to queue back onto the motorway.

As a result of the increased number of lanes on the exit ramp, modifications to the existing intersection are required. The current proposed road design requires the removal of an existing island and trees to provide sufficient space for a safe intersection to meet the requirements outlined above.

CPB Contractors have been requested to provide a review of four Options for the intersection as a solution to retaining a number of the Lemon Scented Gum trees that currently stand on the traffic island near the intersection of Flemington Road and Church Street North Melbourne.

This Options Report will summarise the engineering attributes of the four Options for consideration in determining the preferred intersection arrangement.

In general terms the key features of each option are:

Option Number	Key Features
Option 1	Modify kerbs to move closer to the gum trees to provide room for the required number of lanes at the Church Street Intersection. This has a risk of damage to the roots of the trees. The resulting approach geometry will provide higher probability of vehicular conflict. Pedestrian connectivity from north to south across Flemington Road is not equivalent to existing conditions. Existing bike lanes will be retained.
Option 2	Modify kerbs on northern edge of Flemington Road to provide room for the required number of lanes at the Church Street Intersection. This will require extensive utility service relocation in the northern footpath immediately adjacent to existing residences but reduces the risk of damage to the tree roots. The approach geometry of Option 1 remains with a higher probability of vehicular conflict. Pedestrian connectivity from north to south across Flemington Road is not equivalent to existing conditions. Existing bike lanes will be retained.
Option 3	Similar to Option 2, but with additional length of painted lane separation approaching the island as a road safety improvement. Again, this will require extensive utility service relocation in the northern footpath immediately adjacent to existing residences and reduces the risk of damage to the tree roots. The approach geometry is improved but a high probability of vehicular conflict remains. Pedestrian connectivity from north to south across Flemington Road is not equivalent to existing conditions. Existing bike lanes will be retained.
Option 4	Similar to Option 3, but with an additional footpath provided around the tram stop on the north bound carriageway to provide improvement to pedestrian connectivity. It will require extensive utility service relocation in the northern footpath immediately adjacent to existing residences and it will reduce the risk of damage to the tree roots. The approach geometry is improved but a high probability of vehicular conflict remains. Existing bike lanes will be retained.

2. Context

The four Options are considered in detail later in this report. There are commonalities between the Options as each option requires various compromises in terms of damage to tree roots, utility service and traffic disruption during construction, pedestrian connectivity and road geometry including lane widths and vehicle path conflicts for larger vehicles and bicycles.

All options are required to have the following functional requirements:

- Five lanes connecting from the Flemington Road Exit Ramp to Flemington Road citybound
- Retain the existing traffic island and the large lemon scented gum tree closest to Church
 Street
- On-road city bound bike lane
- Retain the existing rail and tram infrastructure
- Provide two lanes for Elizabeth Street traffic and the Flemington Road service Road to the left of the trees and Peel Street to the right of the trees.

Some of the issues at the intersection listed below that need to be considered for the Options are:

- (a) Existing rail and tram infrastructure, most notably the Upfield Rail bridge and the tram stop
- (b) Intersection design requirements from Austroads Guide to Road Design and associated VicRoads Supplements with regards to:
 - i. Approach and compound geometries
 - ii. Safe passage for cyclists
 - iii. Reduced speed limits
 - iv. Road Safety
- (c) Pedestrian connectivity between the north and south sides of Flemington Road
- (d) Utility service relocations adjacent to existing residences on the northern side of Flemington Road.

(a) Existing rail and tram infrastructure

The existing pier of the Shared User Path Bridge limits options for increasing lane widths and introducing buffer zones between lanes to improve safety on approach to the traffic island surrounding the Lemon Scented Gums.

The bridge pier is as close to the existing carriageway as possible and therefore constrains any horizontal realignment to the north at this location.

(b) Intersection design requirements

- i. Approach and compound geometries
 - The proposed arrangement will require the use of a horizontal curve of approximate radius 110m for the lane closest to the tram stop, which is less than the desirable minimum radius of 165m for 3% cross falls in AGRD Part 3 Figure 7.7.
 - Vehicle tracking for the turning movement onto Flemington Road will be impacted. The clearance between turning vehicles will be reduced, in particular for the three northern turning lanes. A vehicle clearance of less than 0.3m will be provided for a 3 x 19m semi-trailer configuration, and a vehicle clearance of less than 0.8m will be provided for 19m semi/car/19m semi configuration.
 - Due to the 2/3 lane split either side of the median island, the approach geometry will present potential vehicle confusion and risk of side to side clashes particularly between vehicles in the middle lane and the lane immediately right of middle.
- ii. Safe passage for cyclists
 - As a result of the reduced clearance between concurrent turning vehicles a safety risk will be created of vehicles colliding or cyclists getting 'squeezed'.
- iii. Reduced speed limits
 - Due to the reduction in the radius, the intersection is only suitable for a speed limit of 53km/h
- iv. Road Safety
 - Retention of the existing trees presents a road safety hazard.
 - Pedestrian pathway widths are reduced from 2.5m to 1.74m along the northern side of Flemington Road thus compromising pedestrian safety.
 - Medium to long term pavement ride-ability and subsequent performance deterioration will occur in the pavement adjacent to the Lemon Scented Gums due to shallow roots underlying pavement.

(C)

Pedestrian Connectivity

From site observation there is a current road safety issue with the existing arrangement. Pedestrians generated from the Lennon Street connection are crossing over the exit ramp straight to the back of the tram stop rather than using the lights at Church Street.

- The 'desire line' from pedestrians originating at Lennon Street appears to be the tram stop and the crossing for Boundary Road. Due to the presence of the existing island, there is clear evidence that pedestrians are crossing the existing exit ramp in an unsafe manner rather than using the signalised crossing at Church Street. Fencing arrangements within the Options should aim to address this issue by corralling pedestrians to the signalised crossing, or making use of the existing grade separated Shared User Path to the west of the Upfield Rail Bridge.
- A footpath connection from the south side of Flemington Road is provided in Option 4. This requires the following south side works:
 - New lane line marking (requires milling and resurfacing)
 - New kerb works on south side of outbound tram stop so as to provide an adjacent pedestrian footway
 - Minor modification to tram stop to provide sufficient footway width.
 - o Pedestrian safety fence adjacent to roadway.
- The provision of the new footpath behind the tram stop does not appear to be a satisfactory solution. The pedestrian path will be immediately adjacent to traffic lanes. The utilisation of the footpath alongside the tram stop is expected to be low based on pedestrians being stuck between a fence and the back of the platform.
- Impacts on the tram stop may be more difficult in terms of approval for utilising the platform as the pedestrian route and renegotiating non-standard arrangements with Yarra Trams.

(d) Utility Service Relocations – North Side Flemington Road

- In order to provide adequate road pavement width the footpath width on the northern side of Flemington Road adjacent to existing residences will have to be reduced.
- The footpath width on the north side is already restricted to approximately 2.5 metres and feels less than that on site. The proposed road geometry arrangement will reduce the footpath width to 1.74m from back of kerb to fence line.
- Reduction of the footpath width will possibly require a further reduction of footpath width where a section of pedestrian safety fence would to need to be provided.
- Existing services located adjacent to the northern kerb line will be affected by the proposed road pavement widening. This is a highly complex issue and all of the services will require consideration. Existing services along the northern side of Flemington Road, adjacent to existing residences and primarily in the footpath include:
 - o LV and HV power
 - VESI street lighting
 - o Telstra
 - Water services
 - o Victrack fibre
 - Yarra Trams power and communications
 - Relocation of existing light poles will be required and may potentially clash with existing water main and Telstra services.
- Sub Soil Drains when relocated in conjunction with new kerb lines may clash with Telstra and Water services currently installed in footpaths.
- The Services in footpaths are in close proximity to residences and will require road lane closures to provide access for construction. There will be substantial elements of this work that will need to be done at night and will cause considerable additional disruption and inconvenience to local residents and through traffic for a period of four to six months.

3. Option Assessment

Common Elements Table

There are a number of common items between the options and the following table covers those commonalities. The same format has been included assessing each option so that the option specific issues can be easily identified

Common Elements	: Commer	ntary	
Description	Refer to	Option specific description in Section 3.1 to 3.4	
Benefits	1. F	Retains the large tree, and potentially the nearest 2 small trees	
	2. F	Provides the required functionality with a minimum of 3.3m lanes	
Detriments	1. F	Requires the removal of 2 or more trees	
	2. F	Requires a Radius of 110m for the lane closest to the tram stop which	
	i	s below the 165m required for 60km/h (at 3% crossfall). R110 is	
	S	suitable for 53km/h based on Austroads Guide to Road Design Part 3	
	F	Figure 7.7	
	3. F	Requires the use of compound horizontal curves leaving the exit ramp	
	4. F	Pedestrian pathway widths reduced compromising pedestrian safety	
	5. E	Bicycle safety compromised by reduced lane widths and squeezing the space for turning vehicles	
	6. N	Medium to long term pavement ride-ability and performance	
	C	deterioration of the pavement over the Lemon Scented Gum roots and	
	a	adjacent areas.	
	7. F	Retains the existing tree in the middle of a carriageway which presents	
	a	a road safety hazard	
	8. E	Due to continued presence of the island around tree promotes	
	L	undesirable pedestrian behaviours crossing the road away from	
	C	controlled crossing point.	
	9. F	Flow widths over pavement may increase with compromises in	
	C	drainage geometry.	
	10. L	Deficiency in approach lane definition	
Potential Non-	1. F	Reduction in the design speed for the intersection from 60km/h to	
Conformances		50km/h	
	2. 5	Expected relaxation required for ride quality and vehicle stability for	
		Peel Street bound traffic due to retaining the existing kerbline	
	J. \	venicle tracking of adjacent 19m semi s doesn't meet the desirable 1m	
		Soudy separation (minimum of 295mm achieved) based on Austroads	
Diaka		Juide to Road Design Part 4A Figure 7.5	
RISKS	I. <i>F</i>	Any rending and guardian installed to protect the trees may damage the	
		Tee Tools. Roadside hazard is retained	
	2.1	Infamiliar road environment for drivers exiting a freeway	
	1 5. C	Pedestrian behaviours	
	5 5	Speed in intersection	
	6 4	Approach lane definition causing potential vehicle confusion	
	7. l	Jse of compound geometry is a risk to safe vehicle tracking within the	
		anes, particularly given the relatively narrow lane widths.	

3.1 Option 1

Option 1: Comment	tary	
Description	To provide the required width for 3 lanes, plus the bike lane to the north of the	
	tree, the existing kerb alongside the tree is proposed to be realigned. This	
	retains the existing northern kerb line.	
Benefits	1. Retains the large tree, and potentially the nearest 2 small trees	
	Provides the required functionality with a minimum of 3.3m lanes	
	Retains the existing northern footpath width (approx. 2.5m min)	
	Allows existing utilities in the northern footpath to be retained	
Detriments	1. Requires the removal of 2 or more trees	
	2. Requires a Radius of 110m for the lane closest to the tram stop which	
	is below the 165m required for 60km/h (at 3% crossfall). R110 is	
	suitable for 53km/h based on Austroads Guide to Road Design Part 3	
	Figure 7.7	
	3. Requires the use of compound horizontal curves leaving the exit ramp	
	4. Bicycle safety compromised by reduced lane widths and squeezing the	
	space for turning vehicles	
	Medium to long term pavement ride-ability and performance	
	deterioration of the pavement over the Lemon Scented Gum roots and adjacent areas.	
	 Retains the existing tree in the middle of a carriageway which presents a road safety hazard 	
	7. Due to continued presence of the island around tree promotes	
	undesirable pedestrian behaviours crossing the road away from	
	controlled crossing point.	
	8. Flow widths over pavement may increase with compromises in	
	drainage geometry.	
	9. Deficiency in approach lane definition	

10. Requires kerb realignment adjacent to the large tree which may cause
damage to the tree roots during any construction
 Reduction in the design speed for the intersection from 60km/h to
50km/h
Expected relaxation required for ride quality and vehicle stability for
Peel Street bound traffic due to retaining the existing kerb line
3. Vehicle tracking of adjacent 19m semi's doesn't meet the desirable 1m
body separation (minimum of 295mm achieved) based on Austroads
Guide to Road Design Part 4A Figure 7.3
1. Roadside hazard is retained
2. Unfamiliar road environment for drivers exiting a freeway
3. Pedestrian behaviours
4. Speed in intersection
5. Approach lane definition causing potential vehicle confusion.
6. Use of compound geometry is a risk to safe vehicle tracking within the
lanes, particularly given the relatively narrow lane widths.
7. Works may cause damage to the tree roots and negate the desire to
retain the tree
8. Pedestrian movements north to south requires use of the tram
platforms

Option 2: Comment	ary	
Description	To provide the required width for 3 lanes, plus the bike lane to the north of the	
	tree, the existing northern kerb line is proposed to be realigned.	
Benefits	1. Retains the large tree, and potentially the nearest 2 small trees	
	Provides the required functionality with a minimum of 3.3m lanes	
	3. Retains the kerbs alongside the large tree and reduces risk of root	
	damage as part of the works.	
Detriments	 Requires the removal of 2 or more trees 	
	2. Requires a Radius of 110m for the lane closest to the tram stop which	
	is below the 165m required for 60km/h (at 3% crossfall). R110 is	
	suitable for 53km/h based on Austroads Guide to Road Design Part 3	
	Figure 7.7	
	3. Requires the use of compound horizontal curves leaving the exit ramp	
	Pedestrian pathway widths reduced compromising pedestrian safety	
	5. Bicycle safety compromised by reduced lane widths and squeezing the	
	space for turning vehicles	
	Medium to long term pavement ride-ability and performance	
	deterioration of the pavement over the Lemon Scented Gum roots and	
	adjacent areas.	
	7. Retains the existing tree in the middle of a carriageway which presents	
	a road safety hazard	
	Due to continued presence of the island around tree promotes	
	undesirable pedestrian behaviours crossing the road away from	
	controlled crossing point.	
	Flow widths over pavement may increase with compromises in	
	drainage geometry.	
	10. Deficiency in approach lane definition	
	11. Requires kerb realignment on northern edge of Flemington Road and	
	will require significant utilities relocation	

Potential Non-	1. Re	eduction in the design speed for the intersection from 60km/h to
Conformances	50)km/h
	2. E>	cpected relaxation required for ride quality and vehicle stability for
	Pe	eel Street bound traffic due to retaining the existing kerb line
	3. Ve	ehicle tracking of adjacent 19m semi's doesn't meet the desirable 1m
	bc	bdy separation (minimum of 295mm achieved) based on Austroads
	G	uide to Road Design Part 4A Figure 7.3Northern footpath width
	re	duced to 1.74m minimum from the existing 2.5m (kerb to property
	bc	bundary)
	4. In	creased height of kerb required to suit extension of cross fall due to
	wi	dening and match existing footpath
Risks	1. Ro	padside hazard is retained
	2. Ur	nfamiliar road environment for drivers exiting a freeway
	3. Pe	edestrian behaviours
	4. Sp	peed in intersection
	5. Ap	pproach lane definition causing potential vehicle confusion.
	6. Us	se of compound geometry is a risk to safe vehicle tracking within the
	laı	nes, particularly given the relatively narrow lane widths.
	7. Re	eduction in the design speed for the intersection from 60km/h to
	8 Ex	volution required for ride quality and vehicle stability for
	0. L/ Pe	Peel Street bound traffic due to retaining the existing kerbline
	9 W	orks may cause damage to the utility services located in the northern
	fo	otpath
	10. Pe	edestrian movements north to south requires use of the tram
	pla	atforms
	11. Th	ne Utility Services works in the northern footpath area will require
	nig	ght work and disruption to the area for a period of four to six months.

Option 3: Comment	tary		
Description	To provide the required width for 3 lanes, plus the bike lane to the north of the		
	tree, the existing northern kerb line is proposed to be realigned.		
	In addition, a painted "splitter" island is provided on the approach to the		
	intersection where lanes are locally reduced to 3.2m to provide the splitter.		
Benefits	1. Retains the large tree, and potentially the nearest 2 small trees		
	2. Provides the required functionality with a minimum of 3.3m lanes		
	3. Retains the kerbs alongside the large tree and reduces risk of root		
	damage as part of the works.		
	4. Provides painted lane separation on the approach to traffic island to		
	improve intersection safety		
Detriments	1. Requires the removal of 2 or more trees		
	2. Requires a Radius of 110m for the lane closest to the tram stop which		
	is below the 165m required for 60km/h (at 3% crossfall). R110 is		
	suitable for 53km/h based on Austroads Guide to Road Design Part 3		
	Figure 7.7		
	3. Requires the use of compound horizontal curves leaving the exit ramp		
	4. Pedestrian pathway widths reduced compromising pedestrian safety		
	5. Bicycle safety compromised by reduced lane widths and squeezing the		
	space for turning vehicles		
	6. Medium to long term pavement ride-ability and performance		
	deterioration of the pavement over the Lemon Scented Gum roots and		
	adjacent areas.		
	7. Retains the existing tree in the middle of a carriageway which presents		
	a road safety hazard		
	8. Due to continued presence of the island around tree promotes		
	undesirable pedestrian behaviours crossing the road away from		
	controlled crossing point.		
	9. Flow widths over pavement may increase with compromises in		
	drainage geometry.		

	10.	Deficiency in approach lane definition
	11.	Requires kerb realignment on northern edge of Flemington Road and
		will require significant utilities relocation
	12.	Requires localised reduction of traffic lane width to 3.2m at the stop line
		to provide the painted separation to retain existing bridge piers
Potential Non-	1.	Reduction in the design speed for the intersection from 60km/h to
Conformances		50km/h
	2.	Expected relaxation required for ride quality and vehicle stability for
		Peel Street bound traffic due to retaining the existing kerb line
	3.	Vehicle tracking of adjacent 19m semi's doesn't meet the desirable 1m
		body separation (minimum of 295mm achieved) based on Austroads
		Guide to Road Design Part 4A Figure 7.3
	4.	Northern footpath width reduced to 1.74m from the existing 2.5m (kerb
		to property boundary)
	5.	Increased height of kerb required to suit extension of cross fall due to
		widening and match existing footpath
Risks	1.	Roadside hazard is retained
	2.	Unfamiliar road environment for drivers exiting a freeway
	3.	Pedestrian behaviours
	4.	Speed in intersection
	5.	Approach lane definition causing potential vehicle confusion.
	6.	Use of compound geometry is a risk to safe vehicle tracking within the
		lanes, particularly given the relatively narrow lane widths.
	7.	Works may cause damage to the utility services located in the northern
		footpath
	8.	Pedestrian movements north to south requires use of the tram
		platforms
	9.	The Utility Services works in the northern footpath area will require
		night work and disruption to the area for a period of four to six months.

Option 4: Comment	ary		
Description	To provide the required width for 3 lanes, plus the bike lane to the north of the		
	tree, the existing northern kerb line is proposed to be realigned.		
	In addition, a painted "splitter" island is provided on the approach to the		
	intersection where lanes are locally reduced to 3.2m at the stop line to provide		
	the painted splitter island.		
	A new pedestrian path is provided around the out bound tram platform to		
	replace the Shared User Path connection that exists beside the large tree.		
Benefits	1. Retains the large tree, and potentially the nearest 2 small trees		
	2. Provides the required functionality with a minimum of 3.3m lanes		
	3. Retains the kerbs alongside the large tree and reduces risk of root		
	damage as part of the works.		
	4. Provides painted chevron lane separation on approach to traffic island		
	to improve intersection safety		
	5. Provides separated 2m pedestrian footpath in addition to the tram		
	platforms		
	6. Retains the existing Church Street intersection		
Detriments	1. Requires the removal of 2 or more trees		
	2. Requires a Radius of 110m for the lane closest to the tram stop which		
	is below the 165m required for 60km/h (at 3% crossfall). R110 is		
	suitable for 53km/h based on Austroads Guide to Road Design Part 3		
	Figure 7.7		
	3. Requires the use of compound horizontal curves leaving the exit ramp		
	4. Pedestrian pathway widths reduced compromising pedestrian safety		
	 Bicycle safety compromised by reduced lane widths and squeezing the space for turning vehicles 		
	6. Medium to long term pavement ride-ability and performance		
	deterioration of the pavement over the Lemon Scented Gum roots and		
	adjacent areas.		
	7. Retains the existing tree in the middle of a carriageway which presents		

	a road safety hazard
	Due to continued presence of the island around tree promotes
	undesirable pedestrian behaviours crossing the road away from
	controlled crossing point.
	9. Flow widths over pavement may increase with compromises in
	drainage geometry.
	10. Deficiency in approach lane definition will present potential vehicle
	confusion and risk of side to side clashes.
	11. Requires kerb realignment on northern edge of Flemington Road and
	will require significant utilities relocation adjacent to existing residences.
	12. Requires localised reduction of traffic lane width to 3.2m at the stop line
	to provide the painted lane separation to retain existing bridge piers
	13. Requires modification to the existing tram stop to provide 2m footpath
	14. Creates additional traffic impacts with a new work zone and additional
	pavement works on the north bound carriageway of Flemington Rd
Potential Non-	1 Reduction in the design speed for the intersection from 60km/h to
Conformances	50km/h
Comornanoco	 Expected relaxation required for ride quality and vehicle stability for
	Peel Street bound traffic due to retaining the existing kerbline
	3 Vehicle tracking of adjacent 19m semi's doesn't meet the desirable 1m
	body separation (minimum of 295mm achieved) based on Austroads
	Guide to Road Design Part 4A Figure 7.3
	A Northern footnath width reduced to 1.74m from the existing 2.5m (kerb
	4. Northern toopath with reduced to 1.74m from the existing 2.5m (keib
	5 Increased height of kerb required to suit extension of cross fall due to
	5. Increased height of kerb required to suit extension of closs fail due to widening and match existing footpath
Dieko	A Decide bezord is retained
risks	Coduside Hazard is relative
	2. Dilianiliar toau environment for unvers exiting a neeway
	Dicycle salety fisk increased due to fiantowed lanes. Dedectrice behavioure
	4. Pedestinan benaviours
	5. Speed III Intersection 6. Approach long definition equains potential vahials confusion and risk of
	6. Approach and definition causing potential vehicle confusion and fisk of
	Side to side clashes.
	7. Use of compound geometry is a fisk to sale vehicle tracking within the
	lanes, particularly given the relatively harrow lane widths.
	 Works may cause damage to the utility services located in the northern footpath
	9 Pedestrian movements north to south requires use of the tram
	platforms
	10. The Utility Services works in the northern footpath area will require
	night work and disruption to the area for a period of four to six months.

4. Option 4 – Basic geometry and lane widths

5. Current Design

